Get the program brochure
Check out the program and fee details in our brochure
Generative AI for Business with Microsoft Azure OpenAI
Learn generative AI with code & no-code on Azure & OpenAI
Application closes 4th Jul 2024
- Program Overview
- Curriculum
- Certificate
- Tools
- Projects
- Faculty
- Fees
Key Highlights of the Generative AI Program
-
AI-900 Training by Microsoft Certified
Trainers (Optional) -
Prompt Engineering without and with code
-
Azure Lab access with OpenAI Studio
-
Learn from experienced industry mentors
-
8+ hands-on case studies, 4 hands-on projects
-
Get personalised assistance with dedicated Program Manager and Academic Support
-
Get a Microsoft Applied Skill Badge
-
AI-900 Certification Exam Prep Sessions
Skills you will learn
- Prompt Engineering
- Using OpenAI API
- Using Python SDK for Prompt Engineering
- Microsoft Azure Cloud Services for AI
Great Learning alumni work at top companies
Curriculum
This program, structured into four distinct modules, offers an in-depth understanding of Azure OpenAI and Generative AI. It begins with Module 1, which introduces the fundamentals of AI, Machine Learning (ML), Large Language Models (LLMs), and Prompt Engineering, along with an overview of Azure's OpenAI services. Module 2 focuses on the Python skills needed to work effectively with generative AI on a large scale. In Module 3, learners gain hands-on experience with the Azure OpenAI API key and Python SDK, exploring practical applications of Generative AI in tasks such as text classification and summarization. The final module, Module 4, prepares participants for the AI-900 Certification Exam. By the program's conclusion, participants will be equipped with the knowledge and skills to leverage Generative AI in various applications, ranging from generating content to crafting effective prompts.
Read more
Module-1: Leveraging Generative AI for Business Applications
The module revolves around three core pillars - understanding Generative AI, exploring Azure OpenAI services, and mastering Prompt Engineering. In this enriching journey, you will delve into foundational concepts of AI, Machine Learning (ML), Deep Learning (DL), Large Language Models (LLMs), and their applications across various industries. You will gain hands-on experience with cutting-edge generative tools and explore the vast capabilities of Azure OpenAI services. Lastly, you will learn the intricate art of Prompt Engineering, mastering the design and implementation of effective prompts without coding.
Week-1: ML Foundations for Generative AI
The outcome of this week is to understand foundational Machine Learning principles that enable Generative AI to perform tasks like creating new content, such as text and images, by learning from extensive datasets.
- Mathematical Foundations of Generative AI
- Understanding Machine Learning for Generative AI
- Connect NLP fundamentals with advanced Generative AI applications
Week-2: Generative AI: Business Landscape & Overview
The outcome of this week is to understand the Generative AI Landscape, fundamentals, and possibilities for businesses to solve problems and create products.
- Understanding Generative and Discriminative AI
- A brief timeline of Generative AI
- A peek into generative models
- Deconstructing the behavior of a large language models
- ML, DL, and GenAI applications in business
- Hands-on Demonstration of popular tools (ChatGPT & DALL-E)
Week-3: Prompt Engineering without Code
The outcome of this week is to gain practical knowledge of Prompt Engineering and the ability to do it without code for various business use cases.
- LLMs and the genesis of Prompting
- How does the Attention Mechanism work?
- A brief history of the GPT model series
- Accessing GPT through Azure
- Designing prompts for business use cases using playground templates
- Prompting techniques (Prompt templates, precise instructions, chain of thought prompting)
- Ideating for prompts (prompt generation by induction, prompt paraphrasing)
- Understand the concept of prompt engineering and its role in optimizing Azure OpenAI models' performance.
- Learn the capabilities of DALL-E in the Azure openAI service and Use the DALL-E playground in Azure OpenAI Studio
Week-4: Project: Product Feedback Review & Sentiment Analysis
Problem Statement: Amazon needs an automated system that can efficiently analyze product reviews, extract critical information, and determine the sentiments expressed by customers. The solution should help the company gain insights into product performance and customer satisfaction.
Module-2: Python for Generative AI
This module prepares participants with vital Python skills for large-scale generative AI tasks, focusing on coding techniques, libraries, and frameworks essential for development, deployment, and scaling. Whether you’re a seasoned programmer looking to expand your AI knowledge or a complete beginner interested in the field, this module will set you up with the programming skills you need.
Week-5: Python for Prompt Engineering : Part-1
This week's goal is to swiftly deepen grasp and expertise in the basics of Python. Concentrating on these fundamental elements, we strive to establish a robust foundation for tasks related to Python.
- Variables
- Data types
- Data Structures
- Conditions and Loops
- Functions
- Strings
- Use natural language prompts to write code
Week-6: Python for Prompt Engineering: Part-2
The outcome from this week is to get up to speed on the Python concepts that are needed to automate prompt engineering at scale and understand the cost implications of using APIs.
- Store text in Python
- Edit, add, and delete text in Python
- How to read files in Python
- How to work with a database
- Manipulate string columns
Week-7: Learning Break
Module-3: Designing Generative AI Solutions with Azure Open AI
This advanced module plunges deeper into the workings of LLMs, teaching you how to automate prompt engineering and other Generative AI applications at scale using Python. Learn to set up your Azure Open AI API key and import the Python library/SDK to work with various Generative AI models. Master the Completions API, ChatCompletions API, and Embeddings API, understanding their rates, limits, and pricing. The course then moves to practical applications of Generative AI in text classification and summarization, with hands-on exercises such as classifying medical records and assigning themes to finance news articles. Additionally, get a Microsoft Applied Skill Badge.
Week-8: Prompt Engineering at Scale
The outcome of this week is to learn how to use the Azure Open AI API key and the Python SDK to leverage Generative AI at scale for solving business problems
- Getting set with your Azure Open AI key and Python SDK
- Completions and Chat API
- Kinds of APIs, Models, Token, Rate Limits and Pricing
- Evaluating Generative AI Outputs
- Generate completions to prompts and begin to manage model parameters
- Include clear instructions, request output composition, and use contextual content to improve the quality of the model's responses
Week-9: Classification Tasks with Generative AI
The outcome of this week is to learn how to use Prompt Engineering to solve classification-type problems
- Framing text classification tasks as Generative AI problem
- Sentiment classification
- Assigning themes to a body of text
- Aspect-based sentiment analysis
Week-10: Content Generation and Summarization with Generative AI
The outcome of this week is to learn how to use Generative AI for content generation tasks across various business problem spaces
- Content generation using Generative AI
- Abstractive summarization
- Text generation
Week-11: Information Retrieval and Synthesis workflow with Gen AI
The outcome of this week is to learn how to setup an information retrieval and synthesis workflow on Azure or a local environment for a business use-case
- Overview of advanced application of Generative AI
- Understand information retrieval and synthesis workflow using Azure Open AI
- Effectively communicate the core concepts of Retrieval-Augmented Generation (RAG) with the help of the LangChain package
- Use Azure OpenAI API to generate responses based on your own data
Week-12: Final Project: Aspect-based Classification for Sentiment Analysis
Problem Statement: The objective of this problem statement is to use aspect-based classification for sentiment analysis to identify the aspects of a product or service that customers are most satisfied with and those that need improvement. This will help businesses understand their customers better and make data-driven decisions to improve their products or services. By improving customer satisfaction and loyalty, businesses can increase customer retention rates, reduce churn rates, and ultimately increase revenue.
Module-4: AI-900: Azure AI Fundamentals (Optional 4-week elective)
This module is designed to provide a foundational understanding of machine learning, AI concepts, and associated Microsoft Azure services. While Azure AI Fundamentals can be beneficial in preparing for Azure role-based certifications such as Azure Data Scientist Associate or Azure AI Engineer Associate, it's important to note that it is not a mandatory prerequisite for any of these certifications.
Week-13: Machine Learning workloads on Azure
Identify characteristics of standard machine learning workloads, comprehend foundational principles of ML, and become acquainted with prevalent machine learning methodologies
- Identify regression, classification, and clustering machine learning scenarios
- Identify features and labels in a dataset for machine learning
- Describe the capabilities of Automated machine learning
- Describe data and compute services for data science and machine learning
- Describe model management and deployment capabilities in Azure Machine Learning
Week-14: Computer Vision workloads on Azure
Recognize various computer vision solution types and discover Azure tools for handling computer vision tasks.
- Identify common types of computer vision solution
- Identify features of optical character recognition solutions
- Capabilities of the Azure AI Vision service
- Capabilities of the Azure AI Face detection service
Week-15: Natural Language workloads on Azure
Identify features of typical NLP workload scenarios and explore Azure tools and services applicable to NLP workloads.
- Identify features and uses for key phrase extraction
- Identify features and uses for entity recognition
- Identify features and uses for language modeling
- Identify features of common NLP Workload Scenarios
- Identify Azure tools and services for NLP workloads
Week-16: Generative AI workloads on Azure
Focus on recognizing features of generative AI solutions and understanding the capabilities offered by the Azure OpenAI Service.
- Identify features of generative AI solutions
- Identify capabilities of Azure OpenAI Service
Earn a Certificate from Microsoft Azure
Enhance your resume with a certificate in Generative AI for Business with Microsoft Azure OpenAI from Great Learning and Microsoft Azure and share it with your professional network
* Image for illustration only. Certificate subject to change.
Industry-relevant syllabus
Learn Top In-Demand Tools
Gain hands-on experience with cutting-edge tools and explore the vast capabilities of Generative AI
-
Azure AI Services
-
Python
-
Azure OpenAI Service
-
Azure OpenAI Studio
-
Azure OpenAI Chat API
-
Azure OpenAI Playground
-
Azure OpenAI Completion API
-
GPT-3.5-Turbo
Data sets from the industry
Work on Industry-Relevant Projects
Find below an indicative list of hands-on projects during the course of the program
Meet Your Faculty and Mentors
Learn from highly skilled professionals in the ML field who have engineered Generative AI solutions across industry verticals & have real-world, hands-on work experience
Get industry ready with dedicated career support
-
CAREER PREP SESSIONS
Apply the program skills for professional advancement
-
INTERVIEW QUESTIONS REPOSITORY
Prepare better with a collection of frequently asked interview questions
-
RESUME & LINKEDIN PROFILE REVIEW
Showcase Your Strengths Impressively
-
E-PORTFOLIO
Create a Professional Portfolio Demonstrating Skills and Expertise
Program Fee
Benefits of learning with us
- 16-week online learning
- Microsoft Azure Lab access with OpenAI Studio
- Prompt Engineering without and with code
- 8+ hands-on case studies, 4 hands-on projects
- Certificate of Completion from Microsoft and Great Learning
- Get a Microsoft Applied Skill Badge
Batch Start Date
-
Online · 20th Jul 2024
Admission closing soon
Generative AI for Business with Microsoft Azure OpenAI
Still have queries?
Contact Us
Download Brochure
Check out the program and fee details in our brochure
We are allocating a suitable domain expert to help you out with your queries. Expect to receive a call in the next 4 hours.